Abstract

This paper presents new necessary and sufficient conditions for absolute stability of asymmetric neural networks. The main result is based on a solvable Lie algebra condition, which generalizes existing results for symmetric and normal neural networks. An exponential convergence estimate of the neural networks is also obtained. Further, it is demonstrated how to generate larger sets of weight matrices for absolute stability of the neural networks from known normal weight matrices through simple procedures. The approach is nontrivial in the sense that non-normal matrices can possibly be contained in the resulting weight matrix set. And the results also provide finite checking for robust stability of neural networks in the presence of parameter uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.