Abstract

The Gini’s mean difference was defined as the expected absolute difference between a random variable and its independent copy. The corresponding normalized version, namely Gini’s index, denotes two times the area between the egalitarian line and the Lorenz curve. Both are dispersion indices because they quantify how far a random variable and its independent copy are. Aiming to measure dispersion in the multivariate case, we define and study new Gini’s indices. For the bivariate case we provide several results and we point out that they are “dependence-dispersion” indices. Covariance representations are exhibited, with an interpretation also in terms of conditional distributions. Further results, bounds and illustrative examples are discussed too. Multivariate extensions are defined, aiming to apply both indices in more general settings. Then, we define efficiency Gini’s indices for any semi-coherent system and we discuss about their interpretation. Empirical versions are considered in order as well to apply multivariate Gini’s indices to data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.