Abstract

AbstractA novel multisite cascading calibration (MSCC) approach using the shuffled complex evolution–University of Arizona (SCE-UA) optimization method, developed at the University of Arizona, was employed to calibrate the variable infiltration capacity (VIC) model in the Red River Basin. Model simulations were conducted at 35 nested gauging stations. Compared with simulated results using a priori parameters, single-site calibration can improve VIC model performance at specific calibration sites; however, improvement is still limited in upstream locations. The newly developed MSCC approach overcomes this limitation. Simulations using MSCC not only utilize all of the available streamflow observations but also better represent spatial heterogeneities in the model parameters. Results indicate that MSCC largely improves model performance by decreasing the number of stations with negative Nash-Sutcliffe coefficient of efficiency (NSCE) values from 69% (66%) for a priori parameters to 37% (34%) for single-site ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.