Abstract

Numerous approaches have been proposed for selecting an optimal tag single-nucleotide polymorphism (SNP) set. Most of these approaches are based on linkage disequilibrium (LD). Classical LD measures, such as D' and r2, are frequently used to quantify the relationship between two marker (pairwise) linkage disequilibria. Despite of their successful use in many applications, these measures cannot be used to measure the LD between multiple-marker. These LD measures need information about the frequencies of alleles collected from haplotype dataset. In this study, a cluster algorithm is proposed to cluster SNPs according to multilocus LD measure which is based on information theory. After that, tag SNPs are selected in each cluster optimized by the number of tag SNPs, prediction accuracy and so on. The experimental results show that this new LD measure can be directly applied to genotype dataset collected from the HapMap project, so that it saves the cost of haplotyping. More importantly, the proposed method significantly improves the efficiency and prediction accuracy of tag SNP selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.