Abstract

A new calibration algorithm for multi-camera systems using 1D calibration objects is proposed. The algorithm integrates the rank-4 factorization with Zhang (2004)’s method. The intrinsic parameters as well as the extrinsic parameters are recovered by capturing with cameras the 1D object’s rotations around a fixed point. The algorithm is based on factorization of the scaled measurement matrix, the projective depth of which is estimated in an analytical equation instead of a recursive form. For more than three points on a 1D object, the approach of our algorithm is to extend the scale measurement matrix. The obtained parameters are finally refined through the maximum likelihood inference. Simulations and experiments with real images verify that the proposed technique achieves a good trade-off between the intrinsic and extrinsic camera parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.