Abstract

Today, affinity-based biosensorics is a standard technology in quantitative biomolecular interaction analysis, but suffers from low sample throughput and sometimes from inaccessible kinetics. A new methodology for such biosensors is introduced here that cuts down measurement time dramatically and increases confidentiality of results. In contrast to traditional applications, the ligand immobilized on the sensor chip is exposed to the binding analyte at a rapid stepwise change of the analyte concentration without the need for regenerations between analyte additions. In the application presented here, each addition of the analyte is succeeded by a buffer flow, yielding alternating association and dissociation phases in a "zigzag" style. This binding curve pattern is analyzed by means of novel fitting algorithms, which render detailed kinetics rate constants at a high level of self-consistency, and hence, validity due to multiple cross-checks. In comparison with traditional sequential kinetics analysis, this new multi-step kinetics approach returns practically identical (or improved) kinetics constants--at valuable savings in time/material since regeneration steps, ligand re-captures, or titration equilibrations are unnecessary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call