Abstract
Peak-ring basins are important in understanding the formation of large impact basins on planetary bodies; however, debate still exists as to how peak rings form. Using altimetry and image data from the MESSENGER and LRO spacecraft in orbit around Mercury and the Moon, respectively, we measured the morphometric properties of impact structures in the transition from complex craters with central peaks to peak-ring basins. This work provides a comprehensive morphometric framework for craters and basins in this morphological transition that may be used to further develop and refine various models for peak-ring formation. First, we updated catalogs of craters and basins ≥50km in diameter possessing interior peaks on Mercury and the Moon. Crater degradation states were assessed and morphometric measurements were made on the freshest examples, including depths to the crater floor, areas contained within the outlines of the rim crest and floor, crater volumes, and rim-crest and floor circularity. There is an abrupt decrease in crater depth in the crater to basin transition on both Mercury and the Moon. Peak-ring basins have larger floor area/interior area ratios than complex craters; this ratio is larger in craters on Mercury than on the Moon. The dimensions of central peaks (heights, areas, and volumes exposed above the surface) increase continuously up to the transition to basins. Compared with central peaks, peak rings have reduced heights; however, all interior peaks are typically >1km below the rim-crest elevations. Topographic profiles of peak-ring basins on Mercury and the Moon are distinct from complex craters and exhibit interior cavities or depressions that are bounded by the peak ring with outer annuli that are at higher elevations. We interpret the trends in floor and interior area to be largely due to differences in impact melt production and retention, although variations in types and thicknesses of impactites, including proximal ejecta, could also contribute to the observed trends. Our trends illustrate that the transition from craters to basins is characterized by an abrupt change in morphology, implying a change in process for the formation of peak rings. Refinement of models for peak-ring formation through improved quantitative predictions of crater morphometry and cross-validation with our morphometric framework are needed to better constrain the processes that form peak rings on the terrestrial planets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.