Abstract

BackgroundMeningitis remains a top cause of premature death and loss of disability-adjusted life years in low-income countries. In resource-limited settings, proper laboratory diagnostics are often scarce and knowledge about national and local epidemiology is limited. Misdiagnosis, incorrect treatment and overuse of antibiotics are potential consequences, especially for viral meningitis.MethodsA prospective study was conducted over three months in a teaching hospital in Ethiopia with limited laboratory resources. Cerebrospinal fluid (CSF) samples from patients with suspected meningitis were analysed using a multiplex PCR-based system (FilmArray, BioFire), in addition to basic routine testing with microscopy and culture. Clinical data, as well as information on treatment and outcome were collected.ResultsTwo hundred and eighteen patients were included; 117 (54%) neonates (0–29 days), 63 (29%) paediatrics (1 month-15 years) and 38 (17%) adults (≥16 years). Of 218 CSF samples, 21 (10%) were PCR positive; 4% in neonates, 14% in paediatrics and 18% in adults. Virus was detected in 57% of the PCR positive samples, bacteria in 33% and fungi in 10%. All CSF samples that were PCR positive for a bacterial agent had a white cell count ≥75 cells/mm3 and/or turbid appearance. The majority (90%) of patients received more than one antibiotic for treatment of the meningitis episode. There was no difference in the mean number of different antibiotics received or in the cumulative number of days with antibiotic treatment between patients with a microorganism detected in CSF and those without.ConclusionsA rapid molecular diagnostic system was successfully implemented in an Ethiopian setting without previous experience of molecular diagnostics. Viral meningitis was diagnosed for the first time in routine clinical practice in Ethiopia, and viral agents were the most commonly detected microorganisms in CSF. This study illustrates the potential of rapid diagnostic tests for reducing antibiotic usage in suspected meningitis cases. However, the cost of consumables for the molecular diagnostic system used in this study limits its use in low-income countries.

Highlights

  • Meningitis remains a top cause of premature death and loss of disability-adjusted life years in lowincome countries

  • We demonstrated that an easy-to-use and reliable molecular diagnostic instrument could set the ground for improving patient management and reducing usage of antimicrobials in a resource-limited setting

  • Patient characteristics During the study period, cerebrospinal fluid (CSF) samples from 220 patients with suspected meningitis were analysed at the laboratory

Read more

Summary

Introduction

Meningitis remains a top cause of premature death and loss of disability-adjusted life years in lowincome countries. Meningitis remains a major cause of mortality and morbidity worldwide. In addition to the morbidity and mortality associated with meningitis, the disease represents a huge burden on affected families and the health care system, especially in low-income countries. Laboratory diagnostics of meningitis have included examination of cerebrospinal fluid (CSF) for white blood cells (WBC), measurement of glucose and protein levels, and Gram staining. These are rapid, low-cost analyses but do not have satisfactory specificity alone [7, 8]. Rapid molecular diagnostics have become routine in meningitis diagnostics in high-income countries

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call