Abstract

In this study, CO2 solubility in different choline chloride-based deep eutectic solvents (DESs) has been investigated using the Quantitative Structure–Property Relationship (QSPR). In this regard, the effect of different structures of the hydrogen bond donor (HBD) in choline chloride (ChCl) based deep eutectic solvents (DESs) has been studied in different temperatures and different molar ratios of ChCl as hydrogen bond acceptor (HBA) to HBD. 12 different datasets with 390 data on the CO2 solubility were chosen from the literature for the model development. Eight predictive models, which contain the pressure and one structural descriptor, have been developed at the fixed temperature (i.e. 293, 303, 313, or 323 K), and the constant molar ratio of ChCl to HBD equal to 1:3 or 1:4. Moreover, two models were also introduced, which considered the effects of pressure, temperature, and HBD structures, simultaneously in the molar ratios equal to 1:3 or 1:4. Two additional datasets were used only for the further external validation of these two models at new temperatures, pressures, and HBD structures. It was identified that CO2 solubility depends on the “EEig02d” descriptor of HBD. “EEig02d” is a molecular descriptor derived from the edge adjacency matrix of a molecule that is weighted by dipole moments. This descriptor is also related to the molar volume of the structure. The statistical evaluation of the proposed models for the unfixed and fixed temperature datasets confirmed the validity of the developed models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.