Abstract

Genetic remodeling contributes to the progression of heart failure by affecting myocardial cellular function and survival. In our investigation of the transcriptional regulation of cardiac gene expression, we found several transcriptional pathways involved in pathological cardiac remodeling. A transcriptional repressor, neuron-restrictive silencer factor (NRSF), regulates expression of multiple fetal cardiac genes through the activity of histone deacetylases (HDACs). Inhibition of NRSF in the heart results in cardiac dysfunction and sudden arrhythmic death accompanied by re-expression of a number of fetal genes, including those encoding fetal ion channels, such as the T-type Ca²⁺ channel. In the pathological calcineurin--nuclear factor of activated T-cells (NFAT) signaling pathway, transient receptor potential cation channel, subfamily C, member 6 (TRPC6) is a key component of a Ca²⁺-dependent regulatory loop. Indeed, inhibition of TRPC significantly ameliorates this pathological process in a mouse model of cardiac hypertrophy. Moreover, we recently showed that myocardin-related transcription factor-A (MRTF-A), a co-activator of serum response factor (SRF), mediates prohypertrophic signaling by linking the small GTPase Rho-actin dynamics signaling pathway to cardiac gene transcription. Collectively, our studies have revealed the transcriptional network involved in the development of cardiac dysfunction and potential therapeutic targets for the treatment of heart failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.