Abstract

Further optimization of the agricultural growth process and quality control of perishable food which can be fruits and vegetables as well as every kind of meat or milk product requires new approaches for the sensitive front end. One possibility is reflectance or fluorescence spectroscopy in a wide wavelength range. By now broad usage is hindered by costs, size and performance of existing systems. MOEMS scanning gratings for spectrometers and translational mirrors for Fourier Transform spectroscopy enable small robust systems working in a range from 200nm to 5μm. Both types use digital signal processors (DSPs) capable to compute the spectra and execute complex evaluation and decision algorithms. The MOEMS chips are realized by anisotropic etching of a silicon on insulator (SOI) substrate. First the backside silicon and buried oxide is removed by a wet process then the front side structure is realized by dry etching. Depending on the bearing springs a silicon plate up to 3 x 3 mm 2 wide and typically 30μm thick can be driven resonantly to rotational or translational movement. Combined with additional optical components and appropriate detectors handheld Czerny-Turner or Fourier Transform spectrometers have been realized and tested. Results of first measurements of reflection spectroscopy on model substances have been performed with both system types in the NIR range. Measurements on real objects like tomatoes or apples are intended for a wider wavelength range. Future systems may contain displays and light sources as well as data storage cards or additional interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.