Abstract

Crystal structures of bromine under pressure have been studied through the advanced structure search method in combination with first-principles calculations. At 10 and 90 GPa, we successfully reproduced the experimentally observed molecular phase I and monatomic body-centred orthorhombic phase II, respectively. At 120 and 200 GPa, the lowest-enthalpy structures predicted are body centered tetragonal and face-centered cubic phase, respectively, which are also consistent with previously theoretical study. Interestingly, in the pressure range of 50–80 GPa, our structural searches predicted four structurally similar and modulated structures, oF20, oC24, oF28 and oC12, whose magnitude of the modulation vectors k are 2/5, 1/6, 2/7 and 1/3, respectively. Enthalpy calculations show that oF20, oC24, oF28 and oC12 are thermaldynamically stable in the pressure range of 52–53, 53–58, 58–65 and 65–79 GPa, respectively. Through comparison of the structural characterization and X-ray diffraction patterns of the predicted oF28, oC12 in bromine and the known incommensurate modulated phase V in iodine, we suggest that bromine might also adopt an incommensurate modulated structure. In addition, the prediction of two new phases (oF20 and oC24) between molecular phase I and incommensurate phases are consistent with Raman scattering and X-ray absorption spectroscopy (XAS) experimental results. For the first time, we presented the structure information between molecular phase I and monatomic phase II in bromine. The calculated elastic stiffness coefficients indicate that the four modulated phases are mechanically stable. The calculated electronic density of states for these four predicted phases show that they are all metallic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call