Abstract

The measurements of the electrical breakdown time delay td for a wide range of working voltages and at different preionization levels are presented. The statistical breakdown time delay ts and the discharge formative time tf are experimentally separated and theoretical models of their dependencies on the overvoltage and number densities of residual charges during relaxation are suggested. Several empirical and semiempirical models are used to describe the formative time delay dependence on working voltages tf (U). The empirical and theoretical models from the literature are also applied to the experimental data, without and with empirical corrections. Moreover, several new distributions are experimentally obtained: Gauss-exponential, Gaussian and double Gaussian ones for the statistical time delay, as well as Gaussian and double Gaussian distributions for the formative time. The measurements of the breakdown time delay at different preionization levels (afterglow periods) td (τ) obtained with a galvanic layer of gold and a sub-layer of nickel on the copper cathode are compared to the measurements with a vacuum deposited gold layer on the cathode surface. It was found that the surface charges retaining on a galvanic layer of gold influence the breakdown time delay which leads to double Gaussian distributions of the formative and statistical time delay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call