Abstract

This paper draws from the ‘plasticity and friction only’ view of metal cutting to the presentation of new modelling strategies based on the interaction between finite elements and modern ductile fracture mechanics. The overall presentation is supported by specially designed orthogonal metal cutting experiments that were performed on Lead test specimens under laboratory‐controlled conditions. Comparisons between theoretical predictions and experimental results comprise a wide range of topics such as material flow, cutting forces and specific cutting pressure. The paper demonstrates that while material flow and chip formation can be successfully modelled by traditional ‘plasticity and friction only’ analyses, the contribution of the fracture work involved in the formation of new surfaces is essential for obtaining good estimates of cutting forces and of the specific cutting pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.