Abstract

A model-free extraction of level densities and radiative strength functions for cascade dipole gamma transitions that has been performed to date revealed the need for developing a new model of the deexcitation of compound states of nuclei having arbitrary masses and belonging to any type over a broad range of their excitations. Such a model should provide a practical means for determining thresholds for the breaking of nucleon Cooper pairs below the neutron binding energy, the relationship between the level densities for excitations of the quasiparticle and phonon types, and the emission widths for nuclear-reaction products in excited nuclei. From an analysis of data on the intensities of two-step cascades initiated by radiative thermal-neutron capture, it can be seen that the highest precision in describing available experimental spectra is reached upon taking into account the breaking of three to four Cooper pairs of nucleons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.