Abstract
Fractional calculus is a crucial foundation in mathematics and applied sciences, serving as an extremely valuable tool. Besides, the new hybrid fractional operator, which combines proportional and Caputo operators, offers better applications in numerous fields of mathematics and computer sciences. Due to its wide range of applications, we focus on the proportional Caputo-hybrid operator in this research article. Firstly, we begin by establishing a novel identity for this operator. Then, based on the newfound identity, we establish some integral inequalities that are relevant to the left-hand side of Hermite–Hadamard-type inequalities for the proportional Caputo-hybrid operator. Furthermore, we show how the results improve upon and refine many previous findings in the setting of integral inequalities. Later, we present specific examples together with their related graphs to offer a better understanding of the newly obtained inequalities. Our results not only extend previous studies but also provide valuable viewpoints and methods for tackling a wide range of mathematical and scientific problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.