Abstract

Methane emission fluxes were estimated for 71 oil and gas well pads in the western Permian Basin (Delaware Basin), using a mobile laboratory and an inverse Gaussian dispersion method (OTM 33A). Sites with emissions that were below detection limit (BDL) for OTM 33A were recorded and included in the sample. Average emission rate per site was estimated by bootstrapping and by maximum likelihood best log-normal fit. Sites had to be split into "complex" (sites with liquid storage tanks and/or compressors) and "simple" (sites with only wellheads/pump jacks/separators) categories to achieve acceptable log-normal fits. For complex sites, the log-normal fit depends heavily on the number of BDL sites included. As more BDL sites are included, the log-normal distribution fit to the data is falsely widened, overestimating the mean, highlighting the importance of correctly characterizing low end emissions when using log-normal fits. Basin-wide methane emission rates were estimated for the production sector of the New Mexico portion of the Permian and range from ∼520 000 tons per year, TPY (bootstrapping, 95% CI: 300 000-790 000) to ∼610 000 TPY (log-normal fit method, 95% CI: 330 000-1 000 000). These estimates are a factor of 5.5-9.0 times greater than EPA National Emission Inventory (NEI) estimates for the region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.