Abstract

The flatness of the silicon wafers used to manufacture integrated circuits (IC) is controlled to tight tolerances to help ensure that the full wafer is sufficiently flat for lithographic processing. Advanced lithographic patterning processes require a detailed map of the wafer shape to avoid overlay errors caused by depth-of-focus issues. A large variety of new materials are being introduced in Back-End of Lines (BEOL) to ensure innovative architecture for new applications. The standard in-line control plan for the BEOL layer deposition steps is based on film thickness and global stress measurements which can be performed on blanket wafers to check the process equipment performance. However, the challenge remains to ensure high performance metrology control for process equipment during high volume manufacturing. With the product tolerance getting tighter and tighter and architecture more and more complex, there is an increasing demand for knowledge of the wafer shape. In this paper we present Wave Front Phase Imaging (WFPI), a new wafer geometry technique, where 7.65 million data points were acquired in 5 seconds on a full 300mm wafer enabling a lateral resolution of 96μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.