Abstract

Increasing penetration of distributed generation (DG), may be interesting from several points of view, but it raises important challenges about distribution system operation and planning practices. To optimal allocation of DG, which play an important role in construction of microgrids, the benefits and risks should be qualified and quantified. This paper introduces several probabilistic indices to evaluate the potential operational effects of increasing penetration of renewable DG units such as wind power and photovoltaic on rural distribution network with the aid of evaluating technical benefits and risks tradeoffs. A probabilistic generation-load model is suggested to calculate these indices which combine a large number of possible operating conditions of renewable DG units with their probabilities. Temporal and annual indices of voltage profile and line flow-related attributes such as interest voltage rise, risky voltage rise, risky voltage down, line loss reduction, line loss increment, and line overload flow are introduced using probability and expected values of their occurrence. Also, to measure the overall interests and risks of installing DG, composite indices are presented. The implementation of the proposed framework in a 4-bus and IEEE 33-bus radial distribution systems shows the effectiveness of the benefits and risks assessment technique with the proposed metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.