Abstract

When planetary orbits are numerically integrated for a long time by conventional integrators, the most serious problem is secular errors in the energy and the angular momentum of the planetary system due to discretization (truncation) errors. The secular errors in the energy and the angular momentum mean that the semi-major axes, the eccentricities, and the inclinations of planetary orbits have a secular error which grows linearly with time. Recently symplectic integrators and linear symmetric multistep integrators are found not to produce the secular errors in the energy and the angular momentum due to the discretization errors. Here we describe briefly both methods and discuss favorable properties of these integrators for a long-term integration of planetary orbits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.