Abstract

A novel framework is proposed for the estimation of multiple sinusoids from irregularly sampled time series. This spectral analysis problem is addressed as an under-determined inverse problem, where the spectrum is discretized on an arbitrarily thin frequency grid. As we focus on line spectra estimation, the solution must be sparse, i.e. the amplitude of the spectrum must be zero almost everywhere. Such prior information is taken into account within the Bayesian framework. Two models are used to account for the prior sparseness of the solution, namely a Laplace prior and a Bernoulli–Gaussian prior, associated to optimization and stochastic sampling algorithms, respectively. Such approaches are efficient alternatives to usual sequential prewhitening methods, especially in case of strong sampling aliases perturbating the Fourier spectrum. Both methods should be intensively tested on real data sets by physicists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.