Abstract
This paper presents a methodology for estimating the minimum design vapor pressure of prismatic pressure vessels for on-ship application. Engineering authorities guide the codes for a novel concept design such as a prismatic pressure vessel using a design by analysis (DBA). DBA methods enable high efficiency because they directly calculate the loads to avoid inherent conservativeness that exists in a design by rule (DBR). However, in DBA methods, the designer should conduct a finite element analysis (FEA) and evaluate the results iteratively to meet the design criteria. In this paper, we propose a new approach to estimating the minimum vapor pressure of a prismatic pressure vessel that follows the design philosophy of an IMO Type C independent tank. The procedure of the proposed method was demonstrated based on a case study. An FEA was also conducted for verification purposes. The results show that the proposed method can effectively estimate the required minimum shell thickness and designed vapor pressure without conducting an iterative FEA. In addition, minimization of the tank shell thickness is made possible because the proposed method directly calculates the crack propagation rate to avoid an unnecessary margin while satisfying the fatigue crack propagation criteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.