Abstract
Moore's law continues to grant computer architects ever more transistors in the foreseeable future, and parallelism is the key to continued performance scaling in modern microprocessors. In this paper, the achievements in our research project, which is supported by the National Basic Research 973 Program of China, on parallel architecture, are systematically presented. The innovative approaches and techniques to solve the significant problems in parallel architecture design are summarized, including architecture level optimization, compiler and language-supported technologies, reliability, power-performance efficient design, test and verification challenges, and platform building. Two prototype chips, a multi-heavy-core Godson-3 and a many-light-core Godson-T, are described to demonstrate the highly scalable and reconfigurable parallel architecture designs. We also present some of our achievements appearing in ISCA, MICRO, ISSCC, HPCA, PLDI, PACT, IJCAI, Hot Chips, DATE, IEEE Trans. VLSI, IEEE Micro, IEEE Trans. Computers, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.