Abstract

A new method based on two articulated bodies with internal inertial force, similar to the structural buckling effect, is proposed to describe the unstable yaw relative angular movement between truck and semitrailer, known as jackknifing. An analytic expression is derived from the proposed linear model, allowing the prediction of the deceleration limit prior to the yaw instability phenomenon. A detailed non-linear model with 19 degrees of freedom was developed and used as a simulations tool to verify dynamic performance. The analytical results of the jackknife effect were validated by comparison with the instability tendency simulated with a complete vehicle dynamic model. The results show good agreement between the proposed analytical expression and the numerical simulation. The proposed analytic expression is independent of the vehicle speed and does not require a stability analysis or an integration process, unlike all other techniques available in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.