Abstract

A new data analysis routine is introduced to reconstruct the change in lattice parameters in individual ferroelastic domains and the role of domain-wall motion in the piezoelectric effect. Using special electronics for the synchronization of a PILATUS X-ray area detector with a voltage signal generator, the X-ray diffraction intensity distribution was measured around seven split Bragg peaks as a function of external electric field. The new data analysis algorithm allows the calculation of `extrinsic' (related to domain-wall motion) and `intrinsic' (related to the change in lattice parameters) contributions to the electric-field-induced deformation. Compared with previously existing approaches, the new method benefits from the availability of a three-dimensional diffraction intensity distribution, which enables the separation of Bragg peaks diffracted from differently oriented domain sets. The new technique is applied to calculate the extrinsic and intrinsic contributions to the piezoelectricity in a single crystal of the ferroelectric PbZr1−x Ti x O3 (x = 0.35). The root-mean-square value of the piezoelectric coefficient was obtained as 112 pC N−1. The contribution of the domain-wall motion is estimated as 99 pC N−1. The contribution of electric-field-induced changes to the lattice parameters averaged over all the domains is 71 pC N−1. The equivalent value corresponding to the change in lattice parameters in individual domains may reach up to 189 pC N−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.