Abstract

Use of aluminized composite solid propellants and submerged nozzles are common in solid rocket motors (SRM). Due to the generation of slag, which injects into a combusted gas flow, a two-phase flow pattern is one of the main flow characteristics that need to be investigated in SRM. Validation of two-phase flow modeling in a solid rocket motor combustion chamber is the focus of this research. The particles’ boundary conditions constrain their trajectories, which affect both the two-phase flow calculations, and the evaluation of the slag accumulation. A harsh operation environment in the SRM with high temperatures and high pressure makes the measurement of the internal flow field quite difficult. The open literature includes only a few sets of experimental data that can be used to validate theoretical analyses and numerical calculations for the two-phase flow in a SRM. Therefore, mathematical models that calculate the trajectories of particles may reach different conclusions mainly because of the boundary conditions. A new method to determine the particle velocities on the solid propellant surface is developed in this study, which is based on the x-ray real-time radiography (RTR) technique, and is coupled with the two-phase flow numerical simulation. Other methods imitate the particle ejection from the propellant surface. The RTR high-speed motion analyzer measures the trajectory of the metal particles in a combustion chamber. An image processing software was developed for tracing a slug particle path with the RTR images in the combustion chamber, by which the trajectories of particles were successfully obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.