Abstract

External gear pumps are among the most popular fluid power positive displacement pumps; however, they often suffer from excessive flow pulsation transmitted to the downstream circuit. To meet the increasing demand of quiet operation for modern fluid power systems, it is necessary to give a physically sound method of analyzing the operation of a volumetric pump. The analysis of the basic approach used by the majority of researchers for calculating the flow rate of a gear pump by E.M. Yudin is presented. The article presents a new method for analyzing the operation of volumetric pumps. The method is suitable for the pumps whose dynamic characteristics should be considered according to the model of an equivalent source of flow fluctuations by V.P. Shorin. The method is based on wave theory, the method of hydrodynamic analogies and the impedance method, where the pump is considered according to the model in lumped parameters. The method consists in determining the pressure pulsations at the pump output in bench systems with known dynamic characteristics and recalculating the pump flow rate in pulsations. Computational dynamic models of bench systems in lumped parameters are proposed for subsequent use in dynamic tests of pumps in the form of equivalent sources of fluid flow fluctuations. We give recommendations for the formation of test bench systems with a throttle, a cavity and a pipeline at the pump output. Using the example of an external gear pump with a working volume of 14 cm3/rev, the implementation of the proposed method is considered. The pump’s own pulsation characteristic of the flow rate in a bench system with an “infinitely long” pipeline along two harmonic components of the spectrum is determined, and a test of the method based on the method of determining the instantaneous flow rate by R.N. Starobinskiy is proposed. It is shown that, according to the proposed method and the method of R.N. Starobinskiy, the divergence of the amplitudes of flow pulsations does not exceed (5–10)%. The high degree of coincidence of the results confirms that the external gear pump in question should be considered according to the equivalent source of flow fluctuations model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call