Abstract

BackgroundVentilatory anaerobic threshold (VAT) is a useful submaximal measure of exercise tolerance; however, it must be visually determined. We developed a new mathematical method to objectively determine VAT.MethodsWe employed two retrospective population data sets (A/B). Data A (from 128 healthy subjects, patients with cardiovascular risk factors, and cardiac subjects at institution A, who underwent symptom-limited cardiopulmonary exercise testing) were used to develop the method. Data B (from 163 cardiac patients at institution B, who underwent pre−/post-rehabilitation submaximal exercise testing) were used to apply the developed method. VAT (by V-slope) was visually determined (vVAT), assuming that the pre-VAT segment is parallel to the respiratory exchange ratio (R) = 1 line.ResultsFirst, from data A, exponential fitting of ramp V-slope data yielded the equation y = bax, where a is the slope of the exponential function: a smaller value signified a less steep curve, representing less VCO2 against VO2. Next, a tangential line parallel to R = 1 was drawn. The x-axis value of the contact point was the derived VAT, termed the expVAT (VCO2) (calculated as LN (1/[b*LN(a)]/LN(a). This point represents an instantaneous ΔVCO2/ΔVO2 of 1.0. Second, in a similar way, the relation of VO2 vs. VE (minute ventilation) was fitted exponentially. The tangent line that crosses zero was drawn and the x-axis value was termed expVAT (VE) (calculated as 1/LN(a). For data A, the correlation coefficients (r) of vVAT versus VAT (CO2), and VAT (VE) were 0.924 and 0.903, respectively (p < 0.001), with no significant difference between mean values with the limits of agreement (1.96*SD of the pair difference) being ±276 and ± 278 mL/min, respectively. expVAT (VCO2) and expVAT (VE) significantly correlated with VO2peak (r = 0.971, r = 0.935, p < 0.001). For data B, after cardiac rehabilitation, expVAT (CO2) and exp. (VE) (mL/min) increased from 641 ± 185 to 685 ± 201 and from 696 ± 182 to 727 ± 209, respectively (p < 0.001, p < 0.008), while vVAT increased from 673 ± 191 to 734 ± 226 (p < 0.001). During submaximal testing, expVAT (VCO2) underestimated VAT, whereas expVAT (VE) did not.ConclusionsTwo new mathematically-derived estimates to determine VAT are promising because they yielded an objective VAT that significantly correlated with VO2peak, and detected training effect as well as visual VAT did.

Highlights

  • Ventilatory anaerobic threshold (VAT) is a useful submaximal measure of exercise tolerance; it must be visually determined

  • Ventilatory anaerobic threshold (VAT) and maximal oxygen uptake (VO2max) are two commonly used parameters during cardiopulmonary exercise testing (CPX) [1, 2] that provide physiological and metabolic data that are unobtainable with routine clinical exercise testing involving only electrocardiographic and blood pressure measurements and clinical signs and symptoms

  • VO2max is currently the gold standard for measuring exercise tolerance; VAT, an index of exercise tolerance, has a singular characteristic not shared by VO2max

Read more

Summary

Introduction

Ventilatory anaerobic threshold (VAT) is a useful submaximal measure of exercise tolerance; it must be visually determined. Ventilatory anaerobic threshold (VAT) and maximal oxygen uptake (VO2max) are two commonly used parameters during cardiopulmonary exercise testing (CPX) [1, 2] that provide physiological and metabolic data that are unobtainable with routine clinical exercise testing involving only electrocardiographic and blood pressure measurements and clinical signs and symptoms. VAT is visually observed online during exercise testing before the symptom-limited maximal point. It closely correlates with VO2max, the gold standard measure of exercise tolerance. The exercise protocol does not require maximal testing As it requires visual determination, it is a subjective measurement. In a scientific investigation employing VAT, the detection of VAT must be made in a blinded manner

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.