Abstract

We describe a new technique for measuring coercivity in magnetic bubble films which consists of placing the film in a weak field gradient (∼1 Oe./μm) in order to obtain a set of finger-like domains. The unconstrained ends of these domains are caused to move back and forth in response to an oscillatory field, and the coercivity is obtained from an extrapolation of the linear portion of the response vs. drive field curve. We present a comparison between coercivity values in materials with 3μm and 1.7μm stripe-widths obtained using the new technique and bubble translation. Good correlation is observed for both types of material, the values obtained with the new technique being somewhat higher than the bubble translation values. The difference is ascribed to material non-uniformities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call