Abstract
Microextrusion 3D bioprinting is a comparatively easy method to fabricate structures in tissue engineering. But high viscosity and wall shear stress in the tube and nozzle often lead to low cell survival rate of printed tissue. To reduce the viscosity and shear stress of materials in biological 3D printing, a multidimension microvibration assisted hydrogel 3D printing method was proposed. The compliant mechanism driven by piezoceramic was applied to 3D printing of hydrogels. The shear stress and viscosity of hydrogels could be effectively reduced by multidimension microvibration. Simulation analysis of the extrusion device was carried out to study the influence of vibration parameters on viscosity and shear stress, and optimized multidimension vibration forms and vibration parameters were selected for experiments. The experiment results show that multidimension microvibration can effectively reduce the viscosity of hydrogels and improve printing resolution and print speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.