Abstract
Sulfur dioxide is now considered to be a toxic chemical by most world health authorities. However, it remains an irreplaceable additive in enology for wine conservation, combining antioxidant and antibacterial properties. Sweet white wines from botrytized grapes retain particularly high SO 2 levels due to their high sulfur dioxide binding power. This paper presents a new method for reducing this binding power by removing some of the carbonyl compounds responsible, which are naturally present in these wines. The main carbonyl compounds responsible for the SO 2 binding power of sweet wines were removed, that is, acetaldehyde, pyruvic acid, 2-oxoglutaric acid, and 5-oxofructose. The method retained was selective liquid-solid removal, using phenylsulfonylhydrazine as a scavenging agent. The scavenging function was grafted on different classes of porous polymer supports, and its efficiency was evaluated on sweet white wines under conditions intended to conserve their organoleptic qualities. The results obtained showed that the method was efficient for removing carbonyl compounds and significantly reduced the binding power of the wines. Sensory analysis revealed that this process did not deteriorate their organoleptic qualities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.