Abstract

The algebraic regulator and filter Riccati equations of weakly coupled discrete-time stochastic linear control systems are completely and exactly decomposed into reduced-order continuous-time algebraic Riccati equations corresponding to the subsystems. That is, the exact solution of the global discrete algebraic Riccati equation is found in terms of the reduced-order subsystem nonsymmetric continuous-time algebraic Riccati equations. In addition, the optimal global Kaiman filter is decomposed into local optimal filters both driven by the system measurements and the system optimal control inputs. As a result, the optimal linear-quadratic Gaussian control problem for weakly coupled linear discrete systems takes decomposition and parallelism between subsystem filters and controllers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.