Abstract

The GSTs (glutathione transferases) are involved in the detoxification of a wide variety of hydrophobic substrates. These enzymes have been found in virtually all types of organisms, including plants, animals, nematodes and bacteria. In the present study, we report the molecular and biochemical characterization of algal GSTs. Phylogenetic analysis showed that most of them were distinct from previously described GST classes, but were most closely related to the Sigma class. Profiling of GST genes from the red alga Chondrus crispus and brown alga Laminaria digitata was undertaken after different chemical treatments and showed that they displayed contrasting patterns of transcription. Recombinant algal GST from both species showed transferase activities against the common substrates aryl halides, but also on the alpha,beta-unsaturated carbonyl 4-hydroxynonenal. Also, they exhibit significant peroxidation towards organic hydroperoxides, including oxygenated derivatives of polyunsaturated fatty acids. Among a range of compounds tested, Cibacron Blue was the most efficient inhibitor of algal GSTs identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.