Abstract

The neutral trinuclear iron-thiolate-nitrosyl, [(ON)Fe(mu-S,S-C(6)H(4))](3) (1), and its oxidation product, [(ON)Fe(mu-S,S-C(6)H(4))](3)[PF(6)] (2), were synthesized and characterized by IR, X-ray diffraction, X-ray absorption, electron paramagnetic resonance (EPR), and magnetic measurement. The five-coordinated, square pyramidal geometry around each iron atom in complex 1 remains intact when complex 1 is oxidized to yield complex 2. Magnetic measurements and EPR results show that there is only one unpaired electron in complex 1 (S(total) = 1/2) and no unpaired electron (S(total) = 0) in 2. The detailed geometric comparisons between complexes 1 and 2 provide understanding of the role that the unpaired electron plays in the chemical bonding of this trinuclear complex. Significant shortening of the Fe-Fe, Fe-N, and Fe-S distances around Fe(1) is observed when complex 1 is oxidized to 2. This result implicates that the removal of the unpaired electron does induce the strengthening of the Fe-Fe, Fe-N, and Fe-S bonds in the Fe(1) fragment. A significant shift of the nuNO stretching frequency from 1751 cm(-1) (1) to 1821, 1857 cm(-1) (2) (KBr) also indicates the strengthening of the N-O bonds in complex 2. The EPR, X-ray absorption, magnetic measurements, and molecular orbital calculations lead to the conclusion that the unpaired electron in complex 1 is mainly allocated in the Fe(1) fragment and is best described as {Fe(1)NO}7, so that the unpaired electron is delocalized between Fe and NO via d-pi* orbital interaction; some contributions from [Fe(2)NO] and [Fe(3)NO] as well as the thiolates associated with Fe (1) are also realized. According to MO calculations, the spin density of complex 1 is predominantly located at the Fe atoms with 0.60, -0.15, and 0.25 at Fe(1), Fe(2), and Fe(3), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.