Abstract

Three new members in the family of nickel(II) tellurium(IV)/selenium(IV) oxyhalides generally formulated as Ni(n+1)(QO3)nX2 (Q = Te, X = Cl, n = 6, 10; Q = Se, X = Br, n = 4) have been synthesized by solid-state reactions of NiX2, QO2, and NiO (or Ni2O3) at high temperature. The structure of Ni7(TeO3)6Cl2 features a novel 3D network based on Ni4ClO3 cubane-like clusters with Te atoms located at the cavities of the network. Ni4ClO3 clusters are interconnected into a hexagonal layer through additional O...O edges. The neighboring two layers are further interconnected, via sharing of common Ni(II) atoms, into a novel 3D network. The 3D open framework of Ni5(SeO3)4Br2 is built from 2D nickel(II) oxybromide layers bridged by Se and additional Ni atoms. The structure of Ni11(TeO3)10Cl2 features a condensed 3D network based on NiO5Cl, NiO6, and NiO5 polyhedra interconnected via corner and edge sharing, as well as O-Te-O bridges. The results of magnetic property measurements indicate that all three compounds display antiferromagnetic interactions between nickel(II) centers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.