Abstract

AbstractThe complex structure of the catalytic active phase, and surface‐gas reaction networks have hindered understanding of the oxidative coupling of methane (OCM) reaction mechanism by supported Na2WO4/SiO2 catalysts. The present study demonstrates, with the aid of in situ Raman spectroscopy and chemical probe (H2‐TPR, TAP and steady‐state kinetics) experiments, that the long speculated crystalline Na2WO4 active phase is unstable and melts under OCM reaction conditions, partially transforming to thermally stable surface Na‐WOx sites. Kinetic analysis via temporal analysis of products (TAP) and steady‐state OCM reaction studies demonstrate that (i) surface Na‐WOx sites are responsible for selectively activating CH4 to C2Hx and over‐oxidizing CHy to CO and (ii) molten Na2WO4 phase is mainly responsible for over‐oxidation of CH4 to CO2 and also assists in oxidative dehydrogenation of C2H6 to C2H4. These new insights reveal the nature of catalytic active sites and resolve the OCM reaction mechanism over supported Na2WO4/SiO2 catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call