Abstract
New mechanism that accounts for position sensitivity of saccades evoked in response to stimulation of superior colliculus. J. Neurophysiol. 80: 3373-3379, 1998. Electrical stimulation of the feline superior colliculus (SC) is known to evoke saccades whose size depends on the site stimulated (the "characteristic vector" of evoked saccades) and the initial position of the eyes. Similar stimuli were recently shown to produce slow drifts that are presumably caused by relatively direct projections of the SC onto extraocular motoneurons. Both slow and fast evoked eye movements are similarly affected by the initial position of the eyes, despite their dissimilar metrics, kinematics, and anatomic substrates. We tested the hypothesis that the position sensitivity of evoked saccades is due to the superposition of largely position-invariant saccades and position-dependent slow drifts. We show that such a mechanism can account for the fact that the position sensitivity of evoked saccades increases together with the size of their characteristic vector. Consistent with it, the position sensitivity of saccades drops considerably when the contribution of slow drifts is minimal as, for example, when there is no overlap between evoked saccades and short-duration trains of high-frequency stimuli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.