Abstract

AbstractNitrogen is a significant element that constitutes ambient organic aerosol. Individual N-containing organic molecules are known to have both natural and anthropogenic sources and implicated in a wide-ranging health and environmental effects. Yet, unlike carbon (C), the total quantity of aerosol organic nitrogen (ON) remains largely unquantified, hindering a quantitative understanding of their major sources and impacts. Here, aerosol ON is quantitatively surveyed in hundreds of aerosol filter samples collected from sites of varying urban influence in China using our recently developed method that permits simple, and yet sensitive, simultaneous detection of inorganic and organic nitrogen. Annual average ON concentration was in the range of 0.4–1.4 μg N m−3, representing 17–31% of aerosol total nitrogen. Monte Carlo simulations constrained by paired ON and OC measurements suggest N-containing organic molecules contributed typically 37–50%, with a 95% confidence interval of [12%, 94%], to ambient organic aerosols. Source apportionment analysis reveals that biomass burning and secondary formation are dominant ON sources, accounting for 21–24% and ~ 30% of ON, respectively. Primary biological aerosol is also a significant source of ON (7–18%), with its contribution more prominent in non-urban atmospheres. The results provide the quantitative data for the extent of presence of organic nitrogenous aerosol and the origin of their major sources. Such data, we anticipate, would bring forth a breakthrough in our ability to describe and model organic aerosols and to assess their environmental impacts, such as atmospheric nitrogen nutrient inputs to ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.