Abstract

New measurements of differential and total cross sections for the {sup 12}C(p,{gamma}){sup 13}N reaction have been made at beam energies of E{sub p}=354,390,460,463,565,750, and 1061 keV. Analysis of the astrophysical S factor S(E) for the {sup 12}C(p,{gamma}){sup 13}N reaction at low energies and of the reaction rates has been carried out within the R-matrix approach by using the previously measured nuclear vertex constant (or the respective asymptotic normalization coefficient) for the virtual decay {sup 13}N{yields}p+{sup 12}C to fix the direct capture part of the amplitude in S(E). It is demonstrated that the R-matrix approach, using the measured asymptotic normalization coefficient, can be employed as an ideal tool, minimizing the uncertainties associated with a calculation of the direct capture cross section of the {sup 12}C(p,{gamma}){sup 13}N reaction at extremely low energies. New information on the proton and {gamma} width for the first excited state of {sup 13}N is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.