Abstract

This contribution introduces a newly proposed thermal based method for measurements of drift for in-field applications on real cooling towers up to an eliminator efficiency of approximately 0.0001% of circulating water flow. This method should thus become the main alternative to the methods used nowadays. The main advantage of this newly proposed measurement procedure should be its easy preparation and implementation and quick analysis of measurement results. The article summarizes the development of an innovative probe, and why this new probe and the entire method is needed for the industry. The design of this new probe consists of two main directions of development pathways: the electronic part and the aerodynamic part. The first one lies in the development of a sensor (and the accompanying electronics) and sums up the theoretical principle of the method (the calculation of droplet sizes scatter based on statistics, and the calculation of power needed for the sensor). The aerodynamics part derives from the desired efficiency and accuracy of the measurement and is based on precedent modelling and calculations of flow, containing droplets of various sizes through various uniquely shaped channels. The contribution also demonstrates an experiment made thus far, showing quantity measured and the drift evaluation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.