Abstract
Hyperspectral data is endowed with characteristics of intrinsic nonlinear structure and high dimension. In this paper, a nonlinear manifold learning algorithm - ISOMAP is applied to anomaly detection. Then an improved ISOMAP algorithm is developed based on the analysis of the inherent characteristics of hyperspectral imagery. The improved ISOMAP algorithm selects neighborhood according to a novel measure of combination of spectral gradient and spectral angle in order to make the algorithm more robust to the changes of light and terrain. Experimental results prove the effectiveness of the algorithm in improving the detection performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.