Abstract
MDS self-dual codes have nice algebraic structures and are uniquely determined by lengths. Recently, the construction of MDS self-dual codes of new lengths has become an important and hot issue in coding theory. In this paper, we construct six new classes of MDS self-dual codes by using generalized Reed-Solomon (GRS for short) codes and extended GRS codes. Together with our constructions, the proportion of all known MDS self-dual codes relative to possible MDS self-dual codes generally exceed 57%. As far as we know, this is the largest known ratio. Moreover, some new families of MDS self-orthogonal codes are also constructed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.