Abstract

A new dioxomolybdenum (VI) complex with tridentate hydrazone Schiff base ligand (H2L) derived from 2‐hydroxy‐5‐nitrobenzaldehyde and benzhydrazide was synthesized and designated as [MoO2L (DMF)]·2H2O. The Fe3O4@SiO2‐CPS‐L‐MoO2 (EtOH) nanocatalyst was successfully prepared by grafting H2L ligand on modified Fe3O4 nanoparticles followed by reacting with MoO2 (acac)2. The complex and nanocatalyst were characterized by various techniques such as elemental analysis, mass, FT‐IR, UV–Vis, 1H NMR, 13C{1H}‐NMR, TGA, XRD, XPS, TEM, SEM and VSM. The catalytic activity of [MoO2L (DMF)]2H2O and Fe3O4@SiO2‐CPS‐L‐MoO2 (EtOH) were evaluated for the oxidation of various alkenes (cyclooctene, norbornene, cyclohexene, styrene and α‐methyl styrene) in the presence of tert‐butylhydroperoxide as oxidant. The results revealed that the catalysts were especially efficient for oxidation of cyclooctene and norbornene with 100% selectivity towards corresponding epoxide product. Fe3O4@SiO2‐CPS‐L‐MoO2 (EtOH) showed higher catalytic activity, shorter reaction time and higher turnover number (TON) compared with homogeneous complex [MoO2L (DMF)]·2H2O. Moreover, simple magnetic recovery from the reaction mixture and reuse for several times with no significant loss in activity were other advantages of the nanocatalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.