Abstract

The static and resonance properties of copper metaborate CuB2O4 were experimentally studied in a magnetic field applied in the crystal tetragonal plane. The field-induced second-order phase transition to a weakly ferromagnetic state was observed in the temperature range 10–20 K. The low-field state is characterized by the absence of spontaneous moment, and it represents, presumably, a long-period helicoid. At temperatures below 2 K, two sequential first-order phase transitions were observed. They were accompanied by jumps in resonance absorption with a hysteresis upon changing field-scan direction. These transitions can be caused by the transformation of the incommensurate spin structure into the helicoidal states with periods commensurate with the lattice translation period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.