Abstract
It is well known that the archetype chiral magnet MnSi stabilizes a skyrmion lattice, termed “A-phase,” in a narrow temperature range in the vicinity of the paramagnetic boundary around Tc ∼ 29 K and Hc ∼ 2 kOe. Recently, it has been predicted that at much lower temperatures below Tc, the conical helicoid and the forced ferromagnetic (FFM) states could be separated by a new “unknown state.” In order to detect this “unknown state,” we explored the phase diagram of MnSi oriented single crystals as a function of the d.c. magnetic field (H⃗dc) and the temperature (T) by using a.c. magnetization measurements. For H⃗dc∥ 〈111〉, we observed a new region, termed “B-phase,” in the magnetic phase diagram, characterized by a flat-valley-like anomaly on the in-phase component of the a.c. magnetization (m′), over 3.5 ≤ Hdc ≤ 6.2 kOe just below the low temperature (T < 6 K) FFM boundary. The observed frequency independence over 0.3–1000 Hz and the absence of any measurable absorption in the a.c. magnetization (m″) in the “B-phase” suggest a static nature. The “B-phase” was not observed for either H⃗dc∥ 〈100〉 or 〈110〉, revealing that the magnetic anisotropy could play a role in the stabilization of the phase. The “B-phase” could be compatible with the theoretical predictions if the new magnetic state is supposedly related with a relative reorientation of the four helices in MnSi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.