Abstract

In this work, bio-oil (an organic matrix rich in oxygen functionalities) was used to efficiently dissolve and disperse Fe3+ which upon thermal treatment produced a carbon containing dispersed and encapsulated Fe oxide magnetic nanoparticles. These materials were prepared by dissolution of 8, 16 and 24 wt.% Fe3+ salt in bio-oil followed by treatment at 400, 450, 500 or 600 oC in N2 atmosphere. X-ray diffraction (XRD), scanning (SEM) and transmission electron microscopies (TEM), elemental analysis, thermogravimetric-mass spectrometry (TG-MS), potentiometric titration, Raman and Mossbauer spectroscopies showed that Fe3+ species in bio-oil is reduced to produce magnetic nanoparticles phases: magnetite Fe3O4 and maghemite γ-Fe2O3. At low temperatures, the iron phases were less protected, and the carbon matrix was more reactive, while in temperatures above 500 oC, the iron phases were more stable, however, the carbon matrix was less reactive. Reaction of these magnetic carbon materials with concentrated H2SO4 produced surface sulfonic acidic sites (ca. 1 mmol g-1), especially for the materials obtained at 400 and 450 oC. The materials were used as catalysts on esterification reaction of oleic acid with methanol at 100 oC and conversions of 90% were reached, however, after 2 consecutive uses, the conversion decreased to 30%, being required more studies to improve the material stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.