Abstract

The possibility of producing feed calcium phosphates in a way ensuring a low physical water content in the product was investigated in laboratory conditions. For this purpose the process use of a phosphoric acid solution with a higher (than in conventional methods) P2O5 content (53-63% by wt. P2O5) with CaO (molar fraction of 0.5-0.8) and CaCO3 in the phosphoric acid neutralizing mixture was tested. Phosphates with a high content of phosphorous forms highly assimilable by animals, soluble in 0.4% HCl (94-99%), were obtained. The physical water content of 1-4% by wt. H2O was obtained when a phosphoric acid solution with a 59% by wt. P2O5 content and a CaO molar fraction of 0.8 in the neutralizing mixture were used and for a phosphoric acid solution with a 63 % by wt. P2O5 content. A temperature above 160°C was obtained when respectively phosphoric acid with a 59% by wt. P2O5 content and the highest CaO fraction in the neutralizing mixture and a phosphoric acid solution with a 63% by wt. P2O5 content were used. An elevated CO2 content in the products, indicating an increase in the unreacted calcium carbonate content, was found when a phosphoric acid solution containing 59% by wt. P2O5 and a CaO fraction of 0.8 in the neutralizing mixture were used and also for a phosphoric acid solution with a 63% by wt. P2O5 content and a CaO fraction of 0.7-0.8 in the neutralizing mixture. By supplementing extraction phosphorous acid composition with microelements (Se, Cu and Zn compounds) at the stage of extraction phosphoric acid production one can obtain a product with a homogenous content of the elements, but this entails losses as high as 70-80% caused by the separation of phosphogypsum from the phosphorous material decomposition product. Because of the different mass fractions of microelement salts and feed phosphates a homogenous selenium compound content in feed phosphate is obtained only after 8 hours of mixing. Mixing time is twice shorter for copper and zinc.

Highlights

  • Besides phosphatic fertilizers, feed phosphates are the main product of the phosphorous compounds industry

  • The high-temperature processes or the technologies in which calcium phosphates were precipitated through crystallization have been replaced by processes based on the use of concentrated solutions of extraction phosphoric acid, making it possible to simplify the technological process and reduce energy expenditures for the final drying of the phosphates and to improve the economic effectiveness of the industrial production of feed phosphates[1,2,3,4]

  • Results of laboratory tests of phosphoric acid neutralization with calcium compounds: The chemical composition of the obtained feed phosphate samples and the evaluated laboratory test parameters are shown in table 1

Read more

Summary

Introduction

Besides phosphatic fertilizers, feed phosphates are the main product of the phosphorous compounds industry. The possibility of introducing copper and zinc compounds at the stage of the industrial production of extraction phosphoric acid was examined in a similar way as for selenium compounds by simulating Kola apatite decomposition with sulphuric acid in laboratory conditions.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.