Abstract

A new concept for the low-frequency dispersion aspect of large-signal modeling of microwave III-V field-effect transistors is presented. The approach circumvents the integrability problem between the small-signal transconductance <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Gm</i> RF and the output conductance <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">G</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dsRF</sub> by means of an integral formulation and simultaneously yields a proper description of the drain channel current in the small- and large-signal regime. In the theoretical description of the approach and in an extraction example of an AlGaN/GaN HEMT, it is shown that three independent 2-D nonlinear quantities determine the intrinsic drain channel current ( <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Gm</i> RF, <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">G</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dsRF</sub> , and dc current). The concept is transferred to the modeling of the nonlinear charge control, where the integrability problem between the large-signal charge functions and the small-signal intrinsic capacitance matrix ( <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">gs</sub> , <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">gd</sub> , and <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ds</sub> ) is addressed consistently under consideration of the charge control delays. For the large-signal modeling under pulsed-dc/RF excitation, the dc continuous wave (dc-CW) modeling approach is combined with the state-modeling concept using a superposition formula for drain current and charges, respectively. The new model is implemented in ADS using a 12- and 14-port symbolically defined device for both the dc-CW and pulsed-RF case, respectively. The model has been verified by comparison to measured CW and pulsed-RF load-pull and waveform data at 10-GHz fundamental frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call