Abstract

The astronomical theory of climate change is based on the solution of differential equations describing Earth’s orbital and rotational motions. The equations are used to calculate the change in insolation over the Earth’s surface. As a result of the author’s solution of the orbital problem, the periods and amplitudes of Earth-orbit variations and their evolution have been refined. Unlike previous studies, the equations of Earth’s rotational motion are solved completely. The Earth’s rotational axis precesses relative to a direction different from the direction of the orbit’s axial precession, and oscillates with periods of half a month, half a year and 18.6 years. Also, its oscillations occur with irregular periods of several tens of thousands of years and more. All these motions lead to oscillations of the obliquity in the range of 14.7° to 32.1°, which prove to be 7 - 8 times larger than obtained by a previous theory. In the same proportion, the Earth’s insolation oscillations increase in amplitude, with insolation extremes occurring in other epochs than those in the previous theory. The amplitudes and the onset times of the extremes correlate with known paleoclimate changes. Thirteen insolation periods of paleoclimate variation over an interval of 200 thousand years are identified. From the insolation evolution calculated over a time interval of 1 million years, 6 climate gradations from very cold to very warm are identified.

Highlights

  • Long-term climate oscillations are analyzed in the Astronomical theory of climate change

  • This paper presents the main results of the new Astronomical theory of climate change, how they were obtained and their reliability

  • As a result of the interaction of Solar-system bodies, evolution of the Earth’s orbital and rotational motions proceeds; this evolution in turn gives rise to insolation oscillations being the cause of climate changes observed over time intervals of tens of thousands of years

Read more

Summary

Introduction

Long-term climate oscillations are analyzed in the Astronomical theory of climate change (or alternately named, Astronomical theory of ice ages). The theory is based on the solution of the following three problems: 1) what are the changes in the Earth’s orbit? 2) what are the changes in the Earth’s axis of rotation? 3) what are the changes in the amount of solar radiation over the Earth’s latitude based on the first two changes? The original version of the theory was developed by M. At the end of the 20th century, activities aimed at revisiting the above problems were initiated [7]. This paper presents the main results of the new Astronomical theory of climate change, how they were obtained and their reliability

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call