Abstract

Water and soil pollution by organic pollutants from petrochemical plants has become one of the major environmental problems in recent years. Lipophilic polyelectrolyte gels with ionic groups dissociable in nonpolar organic solvents show an enhanced swelling ability in a corresponding media attributed to the electrostatic repulsion and osmotic pressure provided by dissociated ionic groups. Here, we synthesized new lipophilic polyelectrolyte gels based on an easily available electrolyte monomer, methacryloxyethyl dimethyloctane ammonium trifluoromethanesulfonimide (MODAT), and a lipophilic neutral monomer, dodecyl acrylate by radiation-induced polymerization and cross-linking. The resultant lipophilic polyelectrolyte gels could absorb plenty of organic solvents with dielectric constants lower than 20 and exhibited a high absorbing ability at a wide range of temperatures (0-40 °C). The maximum swelling degree could reach as high as 200 g/g in some media, such as 1,2-dichloroethane (199.4 g/g) and dichloromethane (204 g/g), which was much higher than that of the nonionic gel without the addition of MODAT. Moreover, the resultant lipophilic polyelectrolyte gels could release most of the absorbed solvents within several hours and then be reused. It is expected that this new type of lipophilic polyelectrolyte gels may be a suitable candidate as organic pollutant absorbents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.